
The Deployment Production Line

Jez Humble, Chris Read, Dan North
ThoughtWorks Limited

jez.humble@thoughtworks.com, chris.read@thoughtworks.com, dan.north@thoughtworks.com

Abstract

Testing and deployment can be a difficult and time-

consuming process in complex environments
comprising application servers, messaging
infrastructure and interfaces to external systems. We
have seen deployments take several days, even in cases
where teams have used automated builds to ensure
their code is fully tested.

In this paper we describe principles and practices
which allow new environments to be created,
configured and deployed to at the click of a button. We
show how to fully automate your testing and
deployment process using a multi-stage automated
workflow. Using this “deployment production line”, it
is possible to deploy fully tested code into production
environments quickly and with full confidence that you
can fall back to a previous version easily should a
problem occur.

1. Automate your deployment process

It is often the case when working on a large,
complex application that it must be deployed into a
number of different environments on its journey
through into production. In the course of doing this we
often spend a great deal of time building the software,
getting it to work in the various testing and production
environments, and debugging integration problems
between the application and other systems.

Often the processes for building, testing and
deploying such applications into non-developer
environments are manual, and can in extreme cases
take days. These processes are usually complex,
difficult to repeat reliably, and subject to change during
the development process. Sometimes they are
documented, but often the documentation is incomplete
or out-of-date. In some cases, the information needed
to deploy resides in the heads of several key members
of staff who need to come together to perform the
deployment. It is common for teams to be working on

several application streams that share parts of their
code base, such as libraries and frameworks.

One solution to these problems is to automate fully
the build, testing and deployment process. Automating
this process in the early stages of your project is of
immediate worth. Not only does it save developers
time, but it also helps detect problems with deployment
early on in the development cycle, where fixing the
problem is cheaper.

Furthermore, automating the entire deployment
process embodies a key agile practice – making your
code (in this case your deployment scripts) your
documentation. One benefit gained from this practice
is that your build and deployment scripts capture your
deployment and environment testing process, and can
be leveraged to give you rapid feedback not just on the
integration of the modules of your code, but also on
problems integrating with your environment and
external dependencies.

However, automating deployment can be complex,
time consuming and daunting, and it is not usually
clear exactly how to go about it. In this paper we will
present four basic principles, look at some practices
they motivate, and give examples of how to implement
these practices in order to address what we believe are
the most common challenges facing automation of the
build and deployment process.

These principles are:
1. Each build stage should deliver working

software – don’t have separate stages for
intermediate artifacts such as frameworks.

2. Deploy the same artifacts in every
environment – manage your runtime
configuration separately.

3. Automate testing and deployment – use
several independent testing stages.

4. Evolve your production line along with the
application it assembles.

In the following sections, we will examine the

motivations for these practices and discuss the practical
benefits they deliver.

2. Each build stage should deliver working
software

In the process of creating software, we write
modules and package them in such a way that we can
separate concerns within the application. These
modules have dependencies on each other that are
arranged such that the build process is as efficient as
possible.

Often, however, software has larger scale structures
than modules, such as a framework that is shared
between several independently deployed parts of an
application, or between several distinct applications.

It might seem logical to arrange these dependencies
as a series of independent stages in the build process.
Thus a change to the framework causes it to be built
and tested and an intermediate library to be generated.
The library thus built would then be checked in to
dependent projects, which would in turn trigger the
builds of these dependent applications. In effect, all
this is doing is creating a dependency on binaries as
well as source code, instead of depending on changes
in source code alone to trigger builds. Current
continuous integration tools all support triggering a
single build from multiple source code repositories, so
there is no technical reason why this we should not
stick to source-only dependency.

There are two primary reasons why checking in
intermediate binaries can cause problems. Firstly it can
be inefficient (especially when there is a large amount
of change going on in the framework as well as
modules that depend on it), and secondly it loses
information.

To see how it is inefficient, consider a stream of
several parallel workflows, each with several
intermediate library builds. Each time a library gets
built as a result of a check-in at the beginning of the
production line, a whole series of intermediate builds
only get triggered once this binary itself is checked in.
This means a time lag between checking in your code
and the builds of your actual software. Anything that
slows down your build process should be avoided,
since quick feedback from continuous integration is
essential to agile development.

To put this in perspective, one project with separate,
dependent builds for each discrete module took just
over 30 minutes from a framework source code check
in to all dependent modules being built and tested.
Moving to a single build took it down to less than 3
minutes for the same code. It turned out that most of
the time lost was in building up and tearing down the
Ant JVMs to compile and test each module, plus the
polling intervals for the different build stages. Taking

the same approach on other projects has had a similar,
though less dramatic impact.

Another issue with building dependent components
in independent stages is that you lose the connection
between the initial source code check-in and the
triggering of the later build stages. For the later stages,
all you know is that a dependent library changed. To
find out what source code actually changed and caused
your build to trigger (and maybe fail!), you have to
trace back through the previous stages. If your
framework is under active development, this can
become inconvenient and frustrating.

One solution to both these problems is to build only
deployable binaries. This means that you have a single
build for each application. This build will be kicked off
by any change in the source code of any part of that
application, including the framework. A check-in of
any part of the code will cause the continuous
integration server to check out all source code,
including that of the framework, and build the entire
application in one go, running all associated tests.

This allows the developers to see exactly what
changes occurred in a particular build, and hence to
determine quickly the exact change that caused the
build to trigger. It also delivers the benefit that you
need not check in potentially weighty libraries into
version control, and that you reduce the number of
builds and the length of time it takes to perform them.
The disadvantage to this model is that your framework
code is compiled and unit tested for each separate
application, but in practice this is a negligible
overhead.

It is important to note that your source code should
still be organized in exactly the same modular way you
normally would. This may mean having separate
source control projects for your frameworks, common
modules and applications. These components may also
each have their own continuous integration projects.
The important point is that the binaries created by one
build stage don’t get used as inputs to dependent
projects.

The benefit of this approach is greatest when the
framework is still developing and evolving at the same
pace as the components that use it. As a framework
matures and stabilizes, it should then be treated just as
any other third party module that the software depends
on. This is especially true when the system is large
enough that parts of it are upgraded independently.

3. Deploy the same artifacts in every
environment

The build should generate one or more deployable
artifacts. Components such as intermediate jars should

be rolled into the deployable artifacts within a single
build stage. The same artifacts will be deployed into all
of your environments, from development through the
various UAT and staging environments into
production. This ensures that what you test is what
actually ends up in production.

One of the primary objectives of configuration
management is to get your application up and running
on new environments as simply and quickly as
possible. It should also be possible to change your
configuration at runtime without the application
becoming unavailable.

In terms of application configuration, a common
anti-pattern is to aim for ‘ultimate configurability’.
This is often a requirement of new applications, even if
only stated implicitly. To avoid this anti-pattern it is
important to understand what you want to configure
and how often it is likely to change, and devise the
simplest possible configuration system that handles
these cases.

However, the application binaries are just one part
of your configuration strategy. You also have to
manage the configuration of your application server
stack, databases, network and operating system. In
practice it is possible to manage these different
components of your environment using the same
strategy.

The key to managing configuration is twofold:
separate binaries from configuration, and keep all
configuration information in one place.

In the case of your application this means moving
its runtime configuration outside of any deployed
binaries to a separate place. The same applies to your
application server, operating system, database server,
etc. It is worth checking that the way the binaries and
the configuration have been separated will support the
various different environments that need to support
your application.

There are two different approaches to doing this.
Both have pros and cons, and most of them centre
around ease of upgrading. There is often a fear of
upgrading the underlying technology of an application,
or infrastructure such as the application server, based
upon its complexity. However, having a reliable
automated system that configures and tests your
environments allows you rapidly to gain confidence
that an upgrade will not have a negative impact.

The first and often easiest way to separate binaries
and configuration is to prepare a stripped down version
of each infrastructure component based on the standard
installation, and then apply the configuration on top.
Examples of this include having a standard operating
system or application server build. When you request a
new machine to deploy your application to, you know

what will be installed, and all you have to do is apply
your code and your configuration.

The second approach is to use a script to apply
changes to the standard installation, reconfiguring it
and moving around files. This is often harder because
it requires more logic and control in the application of
the configuration deltas, and hence requires more time
to implement.

Whichever approach is taken, once you have
separated out your configuration, it should be stored in
a version control system such as Subversion. It can
then be made available either directly from version
control, or via LDAP, a RESTful web service, or some
other simple, generic method.

Your binaries should also be stored somewhere
easily accessible, either on an exported file system or
referenced by a URL so that you can create new
environments or upgrade your software as simply and
quickly as possible.

Another choice that needs to be made in any
configuration system is whether to have defaults that
can be overridden, or to require all configurations to be
explicit. The advantage of the former approach is that
it keeps the custom information for each environment
small and easy to manage. However, the latter option
means you have all the configuration information in
one place.

While developing an online user management
system for a well-known ISP, we used a combination
of these two approaches. The configuration system we
used for automatically building and configuring our
WebLogic environments applied a set of defaults, with
override properties to keep track of where each
environment differed from this default. However the
application itself had its default configuration compiled
in, with each environment having an explicit set of
runtime configuration options.

4. Automate testing and deployment

The final stage of the deployment production line is
to automate testing and deployment.

There are three principles that drive how this should
be done. The first principle is that different types of
testing should be independent from each other, with
every stage of application testing tagging a particular
version of a binary with an “OK” or “fail” stamp. The
second principle is to automate fully deploying into all
test environments, staging, and even production.
Finally, you need to be able to test the environments to
which you are deploying.

4.1. Separating out your application testing

There are many types of testing that an application
needs to undergo before it can be put into production.
Unit, functional, integration and performance tests all
need to be executed. Many of these tests can be done in
parallel, and not all builds need to undergo all tests.
For instance, if a tester wants to carry out exploratory
testing, they may only require a build that has passed
its automated functional tests, rather than the full
performance-testing suite.

Splitting up automated testing into several different
suites gives development teams rapid feedback, and is
a good use of resources. For example, functional tests
can be split up such that a simple set of smoke tests
that complete in a couple of minutes are run first. Then
a suite that tests the “happy path” of your business
logic can be run. Following this, your main functional
test suite can be executed, excluding UI tests, which
would be separated out into a final suite.

When these tests do pass, the source code that
generated the tested binaries should be tagged to
indicate this. Tagging the source with the same name
as the binary is a simple and effective way of tracking
the relationship between the two. The same approach
can also be used for environments in which manual
testing is performed.

When the continuous integration system has
informed the testers that automated testing is complete,
they can begin manual testing. Once this is complete,
they can then pass or fail that version of the software.
If the software passes all manual and automated tests,
it is then ready for deployment into staging and
production.

One metaphor for this aspect of the build production
line is scout badges. As the binaries pass certain testing
stages, they earn badges. Badges don’t necessarily
need to be earned in any specific order, although some
badges may define pre-requisites. It’s also possible to
drop out of the badge certification process early if you
decide it’s not for you. At the end of the process, if a
build has a full set of badges, then it earns a big shiny
badge that says it has completed the entire gamut of
tests. Once a binary reaches this stage, it can be
considered fit for production.

As an easy way to keep track of the various versions
of binaries you are generating, the temptation is often
to check these binaries into the same version control
system you use for your source code and configuration.
The problem here is that in many such systems, once
you’ve checked something in, it’s very hard to get rid
of it. In the case of checking in binaries that are built as
part of a continuous integration process, you can have
tens of check ins per day.

In one scenario we decided to check the binaries
into our Subversion repository from day one. Three
months in to the project, we discovered that the

repository was 5.5GB in size, but of that only about
250MB was source code.

The easiest way to get around this is to use a simple
file system hierarchy to keep your binaries in. Having
this file system available as an NFS or Windows share,
or even as a URL, allows easy access for your testing
systems to the binaries they need to test. Where the test
production line is linear, simply copying the file to a
new section of this file system once a test on it has
passed works well. A more complex system is needed
where the production line branches out into parallel
stages. Methods we’ve used include creating files in
the same directory as the binaries when they pass, and
using an issue tracking system.

Once a binary (or set of binaries) has passed all the
required tests, it can then be moved off to a safer
location. Binaries that are no longer required can be
removed.

4.2. Automate deployment

If left unchecked, deploying an application to a test
environment can, over time, become a long, error
prone ordeal. This is why you should automate
deployment early.

All modern application servers have scriptable
remote administration tools. For example, Microsoft’s
IIS can be administered remotely using Active
Directory. Your build and deploy process should
leverage these tools.

Bringing up and down clusters of application
servers, deploying binaries to these clusters,
configuring messaging queues, loading databases and
related deployment tasks can all be scripted. Build
systems such as Ant provide tools for performing many
of these tasks, but if Ant cannot carry out the tasks
required, custom scripts can fill the gap.

Once you have this in place, testers can select which
build they would like to deploy into a specific
environment, and trigger a deployment of that build
themselves. Having this “one click deployment” that
can be triggered by testers as and when they are ready
to test new builds has had a great impact on all the
members of the project teams where we have
implemented it.

On one large J2EE project, deploying a new build to
a testing environment literally required more than a
day of a developer’s time in order to get a new version
of the software deployed and ready for testing. The
complexity and pressure involved often resulted in a
higher than expected number of human errors in
preparing the environment, usually requiring the whole
process to start again. Having the whole environment
set-up and deployment process automated brought that
time down to less than half an hour.

It is a common requirement to have multiple
versions of an application working on the same server
or cluster at the same time, especially when hardware
is at a premium. It is also vital in functional testing
where you want to compare the behaviour of different
versions of an application.

These issues can sometimes be solved using slices.
A slice is a single instance of your application server
and application, using a preset range of resources on
your server (a set of ports, a directory on the file
system, a labelled messaging queue, etc.). Once you
have separated out your binaries and configuration, it is
possible to deploy multiple slices on a machine
simultaneously. In this way, when you deploy the latest
version of your application, you create a new instance
of the application server, assign it an unused range of
ports and other resources on the host, deploy your
application, and bring it up.

Thus you have multiple versions of your application
testable at any time. This strategy can be used on your
production environment to ensure that your service is
continually available, and to provide an extremely
simple failover or back-out strategy to a previous
version of your software in case the newest version
fails.

There are a few things to be aware of when using
this approach. The key one is to ensure that this can be
done safely. Not all infrastructure components support
a slicing model. Another issue arises when changes
need to be made to a component that is shared between
slices, although this can usually be worked around with
a bit of care.

With the more mainstream adoption of
virtualization, a new and compelling paradigm is
emerging. In addition to creating environments using
scripts, it also becomes possible to create entire
“canned” environments, and control them
programmatically.

Using a standard virtual machine image makes it
easy to have a well-known, consistent environment to
use for all your testing. Developers can run local
copies of the virtual machine on their desktops, and
make sure that their new code runs in the environment
as a pre-check in requirement. It also makes it possible
to script complex scalability and integration tests. For
instance, you could simulate a cluster with a set of
virtual machines. You could then fake a catastrophic
failure by programmatically bringing down a virtual
machine and seeing how the cluster reacts. In the same
way, network failures, database connectivity problems
and application scalability can be programmatically
induced and the application’s behaviour tested. We
have also used virtual machines to host multiple
versions of CruiseControl on one box to avoid resource
conflicts, for example when running automated UI

tests. However this is a broad topic that is beyond the
scope of this paper, so we will leave discussion of this
promising field in build engineering.

4.3. Test your environments

Once your environment is configured and your
application deployed, you can also script environment
testing tasks, sometimes known as smoke tests (based
on the principle of “switch it on and see if smoke
comes out”). These tasks include ensuring you can
connect to each of the nodes on a cluster, checking the
database is reachable and that your login is valid,
making sure the correct version of the application is
deployed, sending test messages across message buses
and other common integration tests.

Once these tasks are automated, it becomes possible
to set up an environment, deploy to it and run
integration tests in a fully automated fashion.

The end result of this automation is that your build
process extends beyond continuous build and testing. It
covers configuring your test environments, testing the
environments themselves and deploying your binaries
into them.

5. Evolve your production line along with
the application it assembles

The diagram below describes a theoretical full
production line. Actual implementation of the
production line will vary depending on the nature of
the application being developed. Just as each
application is different and evolving over time, so the
build process that supports the application will evolve.
The ideas presented here are a guide based on what we
have seen in the field. Trying to build a full production
line before writing any code is written doesn’t deliver
any value, so it is important to apply the same amount
of pragmatism to build automation as you do to your
code.

Figure 1: The Deployment Production Line

None of the projects we have mentioned has a

complete production line as described above. Either we
felt that that they didn’t require the full process at their
current stage of development, or we came into the
project at a later stage, where the cost of fully
retrofitting the production line outweighed the benefits.

6. Conclusion

By carefully organizing a project build system so
that every stage delivers independent value, we ensure
that builds are completed as quickly as possible and
that we can link individual builds directly to the source
code changes responsible for triggering them.
Organizing builds monolithically such that the binary
built is unchanged right through to deployment
guarantees that what you test is what ends up in
production.

The second principle of the build production line is
to separate binaries from configuration – for all
infrastructure components in addition to your
application binaries – and manage configuration using
a simple, consistent strategy. Careful application of
this principle allows you to upgrade elements of your
infrastructure without undue pain.

The next step is to manage application testing on
the scout badge model. Your automated deployment
system is responsible for setting up and smoke testing
environments, and deploying binaries into them for
testing.

In order to ensure you can run multiple versions of
your application on your servers at the same time, you
can use slices and virtualization. These techniques also
allow you to deploy a new version of your application
into production safe in the knowledge that you can fall
back to the previous version easily.

These various principles and practices comprise the
deployment production line, a multi-stage, automated
workflow of tasks that facilitates multiple teams
building and deploying into complex environments. Its
emphasis is on simplicity and feedback, using de facto
tools such as CruiseControl, Subversion and Ant to
ensure a consistent, robust and automated build, test
and deployment process from development through
UAT into production.

